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Covariant representation of microscopic charge and current 
densities in terms of polarisation and magnetisation fields 

W P Healy 
Research School of Chemistry, The Australian National University, PO Box 4, Canberra, 
ACT 2600, Australia 

Received 6 April 1978 

Abstract. It is shown that a previously developed formalism for representing microscopic 
charge and current densities in terms of polarisation and magnetisation fields can be 
written in a manifestly Lorentz covariant manner. The chargexurrent density four-vector 
associated with an aggregate of charged point particles is first constructed and its 
behaviour under the time reversal transformation is discussed. Particular polarisation- 
magnetisation tensors defined as sums of line integrals of delta functions are then shown to 
reproduce the charge and current densities in the required fashion; it is noted that the 
components of these tensors, although involving instantaneous integrals along spatial 
curves, are defined in the same way by all observers related by homogeneous Lorentz 
transformations, provided only that the speed of any point of the curves is less than c.  The 
general polarisation-magnetisation tensor is derived through a transformation generated 
by an arbitrary pseudovector field. The explicit form of this field, as well as of a subsidiary 
pseudoscalar field, is obtained for those transformations that interrelate polarisation- 
magnetisation ensors of the line integral kind. 

1. Introduction 

In a recent paper (Healy 1977, to be referred to as I) the microscopic charge and 
current densities due to an aggregate of charged point particles were expressed in 
terms of polarisation and magnetisation fields. It was shown that particular polarisa- 
tion and magnetisation fields can be defined as sums of line integrals of delta functions 
along curves joining an arbitrarily moving reference point to the positions of the 
particles, and that all possible polarisation and magnetisation fields are generated 
through a transformation involving arbitrary differentiable scalar and vector fields. 
Covariant treatments of microscopic polarisation and magnetisation fields have been 
given previously by de Groot and coworkers (de Groot and Vlieger 1965, de Groot 
and Suttorp 1965, de Groot 1969). In the present paper we show that the general 
formalism developed in I can also be written in a manifestly Lorentz covariant 
manner, so that the agreement of this theory with the principles of special relativity is 
established. The behaviour of the fields under all homogeneous Lorentz trans- 
formations is investigated; in particular, the effect of the time reversal transformation, 
which was not considered in I, is discussed in some detail. 

In the relativistic notation to be used the contravariant components of the space- 
time four-vector are given by 

( x P ) =  (XO, x i ) =  (ct, r )  (1) 
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and the covariant components of the four-dimensional gradient by 

(a,)= (80 ,  a,>= - -, v . (A :t ) 
The fundamental metric tensor g is chosen so that 

if p = v = O  

if p ‘f v 
g , v =  -1, if p = v # O ,  p, v = 0, 1 , 2 , 3 .  (3) g,” = i t: 

A repeated Greek index (apart from cy, which will be used to label the particles in the 
aggregate) will denote a sum from 0 to 3 and a repeated Latin index a sum from 1 to 3. 
The Maxwell-Lorentz equations then take the form 

41T 
ab””(x) = - j ” ( x )  

c 

where j is the charge-current density four-vector, 

and b the antisymmetric electromagnetic field tensor, 

bo’ = e’  b i i  = E 1ikb k .  

The tensor b* is the dual of b and is defined by 

Here the eiik are the components of the three-dimensional alternating pseudotensor 
and the E ” ” ~  are those of its four-dimensional counterpart. The atomic field equa- 
tions that involve sources have the covariant form 

41T 
a v h @ ” ( x )  = - j L . ( x )  

c 

where it,,, is the ‘true’ charge-current density four-vector and h is the antisymmetric 
electric displacement-magnetic field tensor with components given by 

(9 1 hoi = di hi’ = € i i k h k  

The true or atomic charge and current densities are those of a collective point particle 
coincident with the chosen reference point and having charge equal to the total charge 
of the aggregate. Introducing the antisymmetric polarisation-magnetisation tensor m 
through the equation 

(10) h F U  = b”” - 4 r m w y  

we obtain from equations ( 4 a )  and (8) the fundamental decomposition (11) of the 
charge-current density four-vector into true and bound contributions, 

j ”  = j:,, + ca,m (1 1) 
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The components of m are related to those of the polarisation and magnetisation fields 
by 

(12) moi = - p i ,  ii - - E iikm k 

In 9: 3 below particular polarisation-magnetisation tensors defined as sums of line 
integrals of delta functions will be discussed; these tensors will be displayed in a 
manifestly covariant form and it will be verified that they satisfy equation (11). The 
general solution of equation (1 1) will be obtained in 0 4. It will first be necessary, 
however, to show that the microscopic charge and current densities transform like a 
four-vector under homogeneous Lorentz transformations, and this will be done in § 2. 

2. The charge-current density four-vector 

The physical system to be considered consists of an aggregate of charged point 
particles in motion. An observer 0 in an inertial frame of reference ascribes to a 
particle labelled a the charge e,, the position vector q, (with rectangular Cartesian 
components q : )  and the velocity vector d,, where the dot denotes differentiation with 
respect to the time t. Associated with particle a we thus have the four-vector x ,  with 
components given by 

( x : > =  (ct, 4,). (13) 
Under a homogeneous Lorentz transformation A to another observer d, these 
components transform like the space-time coordinates x ” .  To fulfil the conditions for 
a Lorentz transformation the elements A@,, must be real and satisfy 

AFP Avvg = g @’. (14) 
This equation implies that the determinant [AI of the matrix (A”,,) is either +1 (proper 
Lorentz transformation) or - 1 (improper Lorentz transformation) and that Aoo is 
either greater than or equal to 1 (orthochronous Lorentz transformation) or less than 
or equal to - 1 (non-orthochronous Lorentz transformation). A particular trans- 
formation which will be of importance in what follows is the time reversal trans- 
formation T, 

; = - t ,  & x i ,  (15) 
for which l A l = - l  and Aoo=-1 .  In addition to this we shall consider the space 
inversion or parity transformation P, 

(16) 
f ‘ = - x ,  i t = t, 

for which \AI = -1 and Aoo = 1, and the charge conjugation transformation C which 
relates two observers 0 and d employing the same space-time coordinate frame but 
adopting different conventions for the signs of the charges. 

We now construct the charge-current density four-vector that corresponds to the 
aggregate of particles. To do this it is necessary to express the time in any frame as a 
function of an invariant parameter T (cf de Groot 1969). We can find such a 
parameter in the following way. Let us first choose a point P that traces out a path 
with speed, in any inertial frame, less than c. Subject to this restriction the motion of P 
can be arbitrary, so long as it is also sufficiently smooth, and need not be related to the 
motion of any material particle. We take T to be the proper time associated with the 
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motion of P, with the added condition that the instantaneous rest frame of P is always 
chosen so that time increases in it, and thus so that r increases continuously from -03 

to 03 as P describes its path. The differential d r  is then given by the formula 

d r  = zizdtJ1- V 2 / c i  

where V(r)  is the velocity of P as measured by an observer 0 at his time t and where 
the plus sign is to be used if the Lorentz transformation connecting 0’s frame and the 
instantaneous rest frame is orthochronous (dt/d.s>O) and the minus sign is to be used 
if the transformation is non-orthochronous (dt/d.r<O). The 7 defined in this manner is 
determined up to an arbitrary constant and is invariant under all Lorentz trans- 
formations. Because the particle coordinates q; are functions of t, the components x: 
of the four-vectors xu can all be expressed as definite functions xE(r) of the parameter 
7. It follows that the quantities j ’ ” ( x )  defined by 

dx’ 
j w ( x ) = c C e u j  u -m < S { x - x , ( r ’ ) ) d r ‘  d r  

are the components of a four-vector, since the four-dimensional delta function is an 
invariant function. Now if the time t’ corresponds to T’ just as t corresponds to T,  then 

8 ( T  - 7’).  
1 

c Idt‘/dr’I 
q c t  - c t ’ )  = 

This holds because dr’ldr’ is never zero and because for fixed t the function t’(7’)- t 
has only one zero, namely r. Using the relation (19) to do the 7’ integration in 
equation (18) we obtain 

where the plus or the minus sign is applicable according as dt ldr  is greater or less than 
zero. The time and space parts of the four-vector j are thus essentially the charge and 
current densities due to the aggregate of particles. 

The appearance of the minus signs in equations (20) requires some comment. 
These signs occur when dt/dT is less than zero, that is whenever the minus sign 
appears in equation (17), and they ensure that j transforms as a true four-vector under 
all, including non-orthochronous, homogeneous Lorentz transformations. Similarly 
the minus sign in equation (17) ensures that d r  is a true invariant. It is possible to 
choose the parameter T in such a way that only the plus sign occurs in equation (17); 
d r  would then be the same for all observers related by orthochronous transformations 
but would suffer a change of sign under a non-orthochronous transformation. In 
addition, the minus signs would never occur in equations (20). However, j would no 
longer be a true four-vector, as its components would transform according to the rule 

?(a )  = sgn(Aoo)Awvj”(x) (21) 

where sgn is the signum function. We shall adhere to the convention adopted above, 
namely that d r  is a true invariant and j a true four-vector, so that the charge and 
current densities are as given in equations (20). This convention then determines the 
transformation behaviour of the other vector and tensor fields; b, m and h are true 
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tensors while b* is a pseudotensor with components satisfying the transformation 
equations 

E * y a )  = ~ A \ P ~ A ” & * ~ ( X ) .  (22) 

Under the charge conjugation transformation C all of these fields change sign. The 
power-force density four-vector f, on the other hand, remains invariant under C. The 
components off, which is a true four-vector, are given by 

so that 
( f ” ) = ( - w , f )  1 

C 

where w is the power density j .  e and f is the Lorentz force density pe + ( l / c ) j  X b. 
Invariance under C is of course shared by f with forces that are not of electromagnetic 
origin. Also the behaviour of f under non-orthochronous transformations is 
independent of the convention used for the behaviour of j and hence of b ;  the charges 
and fields can be observed only in each other’s presence and their combination on the 
right hand side of equation (23) is such as to ensure transformation properties for f 
that would be expected for ordinary forces. To illustrate the consequences of the sign 
convention used in equations (17) and (20), the transformation properties of the fields 
under T, as well as under P and C, are shown in table 1.  It may be noted from the 
effect of the P transformation that j ,  e, p, d and f are three-dimensional polar vectors, 
whereas b, m and h are three-dimensional axial vectors. 

The true charge and current densities can be expressed in a covariant form 
analogous to that of the total charge and current densities. We choose for the 

Table 1. Field transformation properties under T, P and C. Components of a four-vector 
or tensor referred to two reference frames related by T, P or C are distinguished by the 
pairs of suffixes (+, +), (L, R) or (+, -), respectively. The fields are all evaluated at the 
same world point; thus, for example, p ,  = -pc  means that p,(x,)= -p-(x,) ,  where x’: 
and x t  are the space-time coordinates ascribed to the same physical event by two 
observers related by T. 

T P C 

P,- = -9- P,L = + P R  P+ = -y 
I -  i j ! ,  = +jL  j ;  = - j L  j :  = -  

m P‘- = - p t  PL, = -Pk P ;  = - P l  
m!. = + m t  m t = + m k  m’  + -  - - m l  
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aggregate a reference point R(r), which may move arbitrarily subject only to the 
condition that IR( < c, and from it construct the four-vector X with components 

( X ” )  = (ct, R ) .  (7-5) 

These components can be expressed as functions of the parameter T ,  although the 
motion of the reference point need not be related to that of the point P introduced 
earlier. The true charge-current density four-vector is then given by 

where Q is the total charge of the aggregate. 

3. Line integral form of polarisation-magnetisation tensor 

3.1. Construction of line integral polarisation-magnetisation tensor 

In this section we show that there are line integral polarisation-magnetisation tensors 
satisfying equation (1 1). The components of such tensors are related through equa- 
tions (12) to line integral polarisation and magnetisation fields defined by 

Here C, is an arbitrary smoothly moving curve connecting the reference point R to 
the position of particle a and the plus or minus sign is to be used according as dt/dT is 
greater or less than zero. The points of C, can be specified by a real parameter U,  

varying between the lower limit U?’ corresponding to the reference point and the 
upper limit U:” corresponding to the position of particle a. These limits will be 
supposed to be independent of the time, although they may change from curve to 
curve. We shall also assume that the curves are parametrised in the same way by 
every observer, so that a particular value of U, corresponds to a unique and objec- 
tively identifiable point of C,. It follows that the U,  are Lorentz invariant parameters. 
An observer 0 describes the C, by functions r’(u., r )  which specify the configuration 
of each curve at time t .  These functions are the spatial parts of the four-vector 
functions given by 

{x”’(un, 7 ) )  = MT),  r’(u., f (7 ) ) ) .  (28) 

It should be noted that ax”/au, is identically zero; this is so because for a given T the 
events with coordinates x‘”(u,, T) refer to the whole curve C, at a fixed time t and are 
therefore simultaneous events for 0. Let us consider the antisymmetric tensor m 
defined by 
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By using the relation (19) to do the 7’ integration it may be verified that the 
components of m are formed, as in equations (12), from the components of the 
polarisation and magnetisation fields defined by equations (27) .  To show that mi’ is 
equal to p i  it is necessary also to use the fact that ax”/au, is identically zero. Now 
from equation (29) we obtain, after integrating by parts with respect to T’ ,  

(30) 
a ax’” a , m + ” = - ~ e , [  ([-S(x-x’)] ax’” -1 -[-,-S(x-x’)]dr’}du,. u ( 2 )  m 

, au, -m -wauu 

The boundary terms vanish because S(ct-ct‘)  is zero when 7‘ is *CD and r is finite. 
The U, integration can then be done to give 

(31) 
dx” dX’ 

c&m”” = c e, I-, S S ( x  -x,)d?’-cQ -S(x - X ) d r ’ =  j ”  - jc,,. 
f-m d r  

This proves that the line integral polarisation-magnetisation tensor affords a parti- 
cular solution to equation (1 1). 

3.2. Lorentz transformation of line integral polarisation-magnetisation tensor 

The tensor m in equation (29) was defined through its components referred to an 
observer 0. Under a Lorentz transformation A to another observer d these 
components are transformed to 

where 

f ’” (u , ,  T ) =  A ” j ’ ” ( u , ,  7). (33) 
We have already noted that axf0/au, is identically zero and that because of this the 
polarisation field p associated with the components m””’ is of the form (27a) .  It 
follows from equation (33), however, that aZ‘’/au, is in general non-zero. We shall 
show that despite this the components riiw’’ can,’ by a suitable transformation, be 
related to fields p and m similar in form to the fields p and m given by equations (27) .  

For fixed 7’ the events labelled x’(u,, 7’) by 0 correspond to the curve C, at the 
time t ‘ .  These same events are labelled f ’ (u , ,  7’) by 5, but they do not correspond to 
the configuration of C,, as seen by d, at any one time 7‘; instead, these events 
correspond to the different points P‘ of C, seen by d at different times ( l /c)Z”(u, ,  7‘). 

That these times vary with U, as well as with T’ is a reflection of the relativity of 
simultaneity-spatially separated events that are simultaneous for 0 are not, in 
general, simultaneous for d. Now if the speed of any point of C, is always less than c,  
then af’O/ar‘ has the same sign for all U, as well as for all 7’. We can prove this by 
noting that 

and that, because of the Cauchy-Schwartz inequality and equation (14), 
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Thus Aoo+ Aoi(c-’ar’’/at’) has the same sign as Aoo and so af”/aT’ has the same sign as 
or the opposite sign to dx” /d i  according as boos 1 or A o o d  -1. It follows that the 
sign of af‘O/aT’ is independent of U, ; moreover, since the sign of dx”/dT’ is indepen- 
dent of T‘ ,  the sign of af fo /dT’  is independent of T’ as well. Let us again fix a proper 
time T’ for the moving point P. This determines, as was explained in Q 2, a time i ’ ( ~ ’ )  
for observer d which is of necessity independent of U,. We let ?’ be the proper time at 
which 2” equals c j ’ .  7’ depends on F ’ ,  and hence on T’,  and also on  U,, and is such that 

~ ” { u , ,  ?’(U,, T’)}  = c i f ( + ) .  (36) 

The events labelled .?{U,, ?’(up, T’)}  are thus all simultaneous for d-they correspond 
to the curve C, as seen by d at time i’(7‘). If these events are relabelled through the 
transformation 

y ‘ ( U , ,  7’)  E f ’ { U , ,  ?’(U,, T’)}, (37) 

then it follows from equation (36) that ag”/au, is identically zero. We now show that 
tFiwu as given in equation (32) can be written as 

so that, since ay“/au, is zero, tFi”’(3) bears the same relation to the polarisation a d  
magnetisation fields p and rii defined by d as instantaneous line integrals along the 
curves C, that m’”(x) does to the fields p and m defined in a similar way by 0. For 
the delta function that appears in equation (32) we have the decomposition 

1 
b { f - f ’ ( U , ,  T’)}  = * S { ? - P ’ ( U , ,  ? ’ ( T ‘ ) ) } r S { T ’ - ? ( U , ,  7 ) )  ax  /a+ (39) 

where the plus or the minus sign is to be used according as aL“/aT‘ is greater or less 
than zero. Equation (39) holds because ?(U,, T )  is for fixed 7 the unique zero of 
f”(u,, 7’)- f o  and because af” /& ’  is never zero. Substituting from equation (39) in 
equation (32) and using the relation (37) we obtain 

Here 

$(U,, i(7)) = ?‘{U,, t’(?(u,, T ) ) }  (41) 

and is for d the position vector at time 7 of that point of C, which corresponds to U,. 
The criterion for the use of the plus or the minus sign in equation (40) is such as to 
ensure that *djj“/dT is positive. The right hand side of equation (38) therefore 
reduces to that of equation (40), and the equivalence of the expressions (32) and (38) 
for t f iMu is established. 

4. General form of polarisation-magnetisation tensor 

4.1. Transformation of tensor field m with change of reference point R 

The line integral polarisation-magnetisation tensor defined by equation (29) is not the 
most general solution of equation (1 1). To find the general solution we consider two 
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tensor fields m( l )  and qz) that are associated with the reference points R1 and RZ and 
that satisfy equation (1 1). These fields are not necessarily of the line integral form and 
the reference points are not necessarily coincident. We let R1 and RZ be joined by a 
curve Clz which degenerates to a point if the reference points coincide but which 
otherwise is specified by a Lorentz invariant parameter v that takes values between 
the limits U(’) corresponding to R1 and v C 2 )  corresponding to R2. An observer 0 
describes the points of Clz at a given time by a set of four-vectors with components 
x ’ ” ( v ,  T )  which are such that a x r 0 / a u  is identically zero. Defining the tensor m(lz) by 

we obtain 

where u(lz) is a pseudo four-vector field. This is so because the necessary and sufficient 
condition for the four-divergence of an antisymmetric tensor to vanish identically is 
that the tensor be expressible in the form d‘”Fapv,  for some U. (This in turn is 
equivalent to the three-dimensional theorems that the curl of a vector field vanishes 
identically if and only if the vector field is the gradient of a scalar potential and that the 
divergence of a vector field vanishes identically if and only if the vector field is the curl 
of a vector potential.) Equation (44) expresses the necessary and sufficient condition 
for both m( l )  and m(z)  to be solutions of equation (1 1) when either of them is so. The 
general solution of equation (1 1) is therefore obtained by starting with a particular 
solution-for example the line integral polarisation-magnetisation tensor discussed in 
S; 3-and then performing the transformation (44) for all possible fields qlZ) and all 
possible curves Cl1. 

If m( l )  and p2)  are both of the line integral form (29) and are associated with 
curves Cal and C,Z respectively, then the components of the field ql2) can be 
identified with linear combinations of integrals over surfaces C, bounded by Cal, C,, 
and Cl2. The boundary curve of C, will be denoted by I‘, and will be taken to be 
traced out in the positive sense by going from RI  to RZ along C12, then from R2 to qa 
along C,Z and finally from q, back to R1 in the negative sense along CUI. The 
convention used in this paper for the relation of the sense of a surface to that of its 
boundary curve (or of the sign of a volume to the sense of its boundary surface) is 
explained in the appendix. If we define r ’ l ”  by 

then we obtain from theorem 1 of the appendix 

ti’ = * 1 e, dr’ S(r - r’)li = - E ~ ~ ~ ~ ~ u ( ~ ~ ) ~  
a 
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where 

In these equations the choice between alternative signs is to be made so that the plus 
sign is used if dt/dr>O and the minus sign is used if dt/dr<O. Since the tw” are the 
components of an antisymmetric tensor, equations (46) and (48) together are 
equivalent to 

t ” ” ( x )  = E ~ ” ~ a , v ( ~ ~ ) O ( x ) .  (50 )  

Thus equation (44) holds for line integral polarisation and magnetisation fields and the 
components of u(12) are given for such fields by equations (47) and (49). We now 
introduce for the surface &, parameters U, and U, such that on Xa 

ar’ ar’ 
au, av, 

ds’=--X-du, dv,. 

An observer 0 assigns to the points of C, the four-vector components x‘”(u,, vQ, T) 
and these, since they all refer to a given time for 0, have the property that ax” /au ,  
and ~3x ’~ /av ,  are identically zero. It follows from this that equations (47) and (49) can 
be combined to give 

which displays v ( 1 2 )  in a manifestly covariant form. 

4.2. Transformation of pseudovector field u(12) with change of curve Clz 

The curve CI2 and the pseudovector field u(12) that specify the transformation (44) are 
not uniquely determined. Let us suppose that with two curves Cyz and C:Z joining 
R1 and R2 are associated fields VI:?& and VI{?; )  defined as in equation (42), and that 
the fields vi?3) and U$;, are such that in each case ( a  or b )  the relation (44) holds 
between m(l)  and m(z) .  We let Sub be a surface bounded by and moving with the 
curves C“ and C b  (the suffix 12 now being suppressed); the boundary curve rab of Sab 
consists of C“ taken in its positive sense and C b  in its negative sense and parameters U 

and w are chosen for the surface so that 

a w  au (53) 
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where 

It can readily be shown that a sufficient condition for equation (54) to be valid is that 
there exists a pseudoscalar field , f ( O b )  such that 

a f i ( x ) z  y ( b ) f i ( X ) -  u(a ) f i  (x)+ 2 P b ) f i ( X )  

(56)  fi - (ab )  = a  x (x). 

This condition is also necessary, for if EClvpoapaa is identically zero, then taking p,  v to 
be 0, i we see that eiikajuk is identically zero, and this implies that there exists a 
function , y ( O b )  such that a '  is equal to akcnb). Using this and taking p, Y to be i, j we 
can verify that a' is of the form ao,$'"b'(x)+$(ab)(xo) for some function We now 
define , f ( O b )  in a particular reference frame by 

and extend the definition to every other frame in such a way that , f ( a b )  is a pseudos- 
calar function. Then equation (56) holds in the particular frame, by construction, and 
also in every other frame, by the covariant character of the equation. Thus the 
necessary and sufficient condition for the field u ' ~ )  associated with the curve Cb to 
generate from m ( l )  the same m(2) that the field U(") associated with the curve C" does 
is that 

(x) - (x) + afiz(lb)(X) (58 )  
u ( b ) f i ( X ) =  

where u ( " ~ )  is given by equation ( 5 5 )  and , f ( a b )  is a pseudoscalar function. 
If u ( ~ )  and u ( ~ )  are defined, as in equation (52), to be linear combinations of 

integrals over surfaces X: and Xt respectively, then an explicit form for , f ("b )  can be 
found. We let V, be the volume bounded by Xz, Zs and SQb and assume that the total 
boundary surface U, is simple. (Otherwise a slightly more complicated formulation 
must be given.) We then have two cases according as the normal to Sab has (i) the 
opposite sense to or (ii) the same sense as that to a,. From the definitions (52) and 
( 5 5 )  and theorems 3 and 5 it follows that 

(x)+ dab)yX) (b ) i  (x - U(a)i 

= F [ * z  e, # ds"S(r-r')] 

= T [ * ; :  fl ds ' . i 'S(r-r ' )  1 
=.[*a', e, 111 dV'S(r-r')]. 

"P 

(596 )  
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Here the first sign is determined by whether case (i) (-)or (ii) (+) holds and the second 
by whether dt/dT is greater (+) or less (-) than zero. We introduce for the volume Vu 
invariant parameters U,, U, and w, such that 

ar’ ar‘ art 
au, au, aw, 

dV’=*-.-X-du, dv, dw, 

where the plus sign applies in case (i) and the minus sign in case (ii). An observer 0 
ascribes to the points of Vu the four-vectors xt(u,, vu, w,, T )  having the property that 
axr0/au,, aX’O/at) ,  and ax”/aw, are all identically zero. Because of this the pseudo- 
scalar function Hv, defined by 

can be written as 

In this last expression the first sign is determined by whether case (i) (+) or (ii) (-) 
holds, the second by whether d r / d ~  is greater (+)or  less (-) than zero and the third by 
whether the reference frame is right (+) or left (-) handed. It follows from equation 
(62) that equations (59) are of the form (58) with 

4.3. Transformation of pseudoscalar field X ( a b )  with change of surface Sab 

The transformation (58) connecting two given fields U“) and u ( ~ )  can be carried out 
with various surfaces S a b  bounded by C“ and Cb. We consider two such surfaces S>b 
and Sib  and their associated fields v z b )  and ugh) defined as in equation (55). The 
fields fZb ’  and itb’ to be used in the transformation must then be related by 

dCl - i A )  = U $  - U: (64) 

where the superscript ab is now suppressed. We let VAB be the volume bounded by 
SA and Se,  which we assume to form a simple closed surface. We then have two cases 
according as ( A )  the normal to S A  or ( B )  the normal to SB points into VA, in a right 
handed frame and out of VAB in a left handed frame. (Cases in which neither ( A )  nor 
( B )  holds must be treated separately.) By an argument similar to the one leading to 
equations (59) we obtain 

U;; - 02 = (*l)(&l)#’Q dV’ S(r - r ‘ )  isi 
V A B  

where the first sign is determined by whether case ( A )  (+) or case ( B )  (-) holds and 
the second by whether dt/dT is greater (+) or less (-) than zero. We use for the 
volume VAB invariant parameters U, U and w such that 

ar’ ar’ ar’ 
a u  av a w  

dV‘=*-*-X-du dv dw 
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with the plus sign applying in case ( A )  and the minus sign in case (B). Then 

where the first sign is determined by whether case ( A )  (+) or case (B) (-) holds, the 
second by whether dt/dr is greater (+) or less (-) than zero and the third by whether 
the reference frame is right (+)or  left (-) handed. It follows from equations (64), (65) 
and (67) that 

is (X ) = X A  (X ) + QHv,, (x) + K ,  (68) 

the pseudoscalar K being a constant in any frame (YK = 0). 
It can readily be shown from the exprkssions (62) and (67) that for either of the 

cases ( ( A )  or (B)) considered in this subsection taken in conjunction with either of the 
cases ((i) or (ii)) considered in the previous subsection, the relation 

Hv:(x)  = Hv;(x)  - Hv,, ( X I  (69) 

is valid. Here V t  is the volume bounded by E:, and S>b and V,” is that bounded 
by E:, Et  and Sgb. If i A  and 2s  are defined as in equation (63), then we obtain from 
the relation (69) 

i s  (XI = X A ( X )  + QHv,, (XI. (70) 

This is a particular instance, in which K = 0, of the transformation (68). 

5. Discussion 

We have shown that the microscopic charge and current densities due to an aggregate 
of charged point particles are derivable in a covariant manner from polarisation- 
magnetisation tensor fields. Covariant expressions for these and other auxiliary fields 
have been found. Transformations of the fields have been investigated both in the 
general case and in the special case of line integral polarisation-magnetisation tensors. 
For a fixed orthochronous right handed reference frame, the formalism developed 
here reduces to that given in I. It should be noted that the behaviour of the fields 
under the time reversal and space inversion transformations was not considered in I. 
(It should also be noted that the symbol m which was used in I to denote the relative 
magnetisation field has been used in this paper to denote the total magnetisation 
field.) 

In 9: 3.2 we proved that the line integral polarisation-magnetisation tensors have 
the same form for all observers related by homogeneous Lorentz transformations. 
The argument that was used depended on the speed of every point of the integration 
paths being less than c. A similar argument can be used to establish an analogous 
property for the other fields that appear in the theory. The motion of all the curves, 
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surfaces and volumes must then be restricted so that the speed of every point of them 
is always less than c. We note that this motion has not been dynamically linked to that 
of the material particles, except insofar as some of the curves must end at the particle 
positions. Both this paper and paper I have thus been concerned with a purely 
kinematical description of polarisation and magnetisation fields. 

Appendix. Theorems in vector analysis 

Let f and F be three-dimensional scalar and vector fields. Let C be a closed and 
sensed curve bounding a surface S and X a closed and sensed surface bounding a 
volume V. Both the surface S and the volume V may be moving and f and F may 
depend explicitly on the time t and the fixed field point r as well as on the moving, and 
thus time dependent, source point r ’ .  The sense of C is taken to be independent of the 
handedness of the coordinate frame. The sense of S is determined from that of C by 
the right-hand rule in a right handed frame and the left-hand rule in a left handed 
frame. The normal to Z will be taken to point outwards in a right handed frame and 
inwards in a left handed frame. Any volume element of V will be reckoned positive in 
a right handed frame and negative in a left handed frame. Then the following 
theorems are true: 

Theorem 1 
. *  

fcf dr’ = J J ds’ x V’f. 
S 

Theorem 2 .. 
f C d r ’ x F =  J J (ds’xV’)xF. 

S 

Theorem 3 # f ds’=  [SI V‘f dV’  
r 

(73) 

Theorem 4 

ds’ S ( r - r ’ ) + V  ds’ . i’ 6 ( r - r ’ ) =  - (ds’xV’)x {i’ 6 ( r  - r ’ ) } .  

(74) 
at IJ S 

S S 

Theorem 5 

The proof, or the method of proof, of each of these theorems (as well as of one 
other theorem not used in this paper) was outlined in I where the analysis was 
implicitly restricted to right handed reference frames. But the proofs hold equally 
well for left handed frames, provided the senses of S and Z and the sign of dV‘ are 
chosen in the way described above. It may also be noted that theorems 4 and 5, which 
involve time derivatives, are covariant under the time reversal transformation. 
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